حل مسائل معکوس با استفاده از روش های تفاضلات متناهی

پایان نامه
چکیده

در این پایان نامه مسائل هدایت گرمایی معکوس بررسی می شوند. در این مسائل علاوه بر تابع اصلی مجهول در معادله گرما، مجهول دیگری نیز وجود دارد. برای حل این مسائل معکوس از یک شرط اضافی در یک نقطه داخلی از ناحیه مفروض مسأله استفاده می شود. با استفاده از روش های تفاضلات متناهی به حل این مسأله می پردازیم و سپس پایداری و دقت هریک از روش ها مورد بررسی قرار می گیرد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تقریب های تفاضلات متناهی برای حل عددی مسائل معکوس سهموی

هدف این پژوهش، به دست آوردن طرح های تفاضلات متناهی با مرتبه دقت بالا برای معادله دیفرانسیل جزئی معکوس سهموی است. با حل کردن چنین معادله ای پارامتر کنترل مجهول را به دست می آوریم. به همین منظور طرح های تفاضلات متناهی صریح، ضمنی، کرانک-نیکلسون و کراندال را در نظر گرفته و مرتبه دقت و ناحیه پایداری آن ها را مورد بررسی قرار می دهیم. در ادامه با استفاده از تابع تبدیل معادله دیفرانسیل جزئی را تغییر دا...

15 صفحه اول

روش های تفاضلات متناهی برای حل مسائل مقدار مرزی منفرد

روش تفاضلات متناهی یکی از پرکاربردترین روش های عددی برای حل مسائل مقدار مرزی و معادلات با مشتقات جزئی است. در این پایان نامه، به حل دو مسأله ی مقدار مرزی منفرد که دارای کاربردهایی در فیزیولوژی می باشند، با روش تفاضلات متناهی می پردازیم. در ادامه، به بررسی همگرایی این روش می پردازیم و نشان می دهیم که این روش تفاضلات متناهی دارای مرتبه دقت دو می باشد. در پایان، این روش را برای دو مثال بکار برده و...

15 صفحه اول

ساختن روش‌های تفاضلات متناهی مبتنی بر توابع پایه شعاعی و استفاده از آنها برای حل معادلات دیفرانسیل با هندسه دلخواه

In this paper we, obtain the weight of radial basis finite difference formula for some differential operators. These weights are used to obtain the local truncation error in powers of the inter-node distance and the shape parameter of radial basis functions. We show that for each difference formula, there is a value of the shape parameter for which RBF-FD formulas are more accurate than the cor...

متن کامل

ارائه روش ماتریسهای تبدیل برای حل مسائل هدایت حرارتی معکوس

در مقاله حاضر با ترکیب روشهای تخمین توابع متوالی (SFSM) و روش تقابل دوگانه اجزاء مرزی (DRBEM) یک روش جدید برای حل مسائل معکوس هدایت حرارتی با خواص ترمو فیزیکی ثابت ارائه گردیده است. در روش حاضر تخمین شرط مرزی مجهول با استفاده از دو ماتریس تبدیل صورت می‌گیرد. این ماتریس ها با انجام عملیات ریاضی بر اساس روش تخمین توابع متوالی بر روی ماتریسهائی که در روش دوگانه اجزاء مرزی برای حل مستقیم به کار می‌...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023